Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Suzan Özçelik, ${ }^{\text {a }}$ Muharrem Dincer, ${ }^{\text {a* }}$ Emin Sarıpınar ${ }^{\text {b }}$ and Çiğdem Yılmaz ${ }^{\text {b }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Erciyes University, Arts and Sciences Faculty, Department of Chemistry, 38039 Kayseri, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.051$
$w R$ factor $=0.143$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5-(4-Methoxybenzoyl)-4-(4-methoxyphenyl)-1-[1-(4-methoxyphenyl)ethylidenenamino]-pyrimidin-2(1H)-one

In the title compound, $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$, the pyrimidine ring is slightly puckered. The mean plane of the pyrimidine ring forms dihedral angles of 28.26 (10), 55.53 (9) and 55.96 (10) ${ }^{\circ}$ with the three benzene rings in the molecule. There are intramolecular and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Pyrimidines in general have attracted much interest for biological and medicinal reasons. In particular, various analogues of pyrimidines possess effective antibacterial, antifungal, antiviral, insecticidal and miticidal activities (Cheng, 1969; McNair-Scott et al., 1959; Sankyo Co. Ltd/Ube Industries Ltd, 1984; Kollenz, 1972; Maslivets et al., 1988; Kruglenko et al., 1987; Kozlov et al., 1986). Conformational analysis and quantum chemical calculations have also been carried out by means of semi-empirical calculations for a series of functionalized 1H-pyrimidines (Yıldırım et al., 1995, 1996; Sarıpınar et al., 1996). In the present study, we have carried out the reaction of the furan-2,3-dione (1), which is obtained from p, p^{\prime} dimethoxydibenzoylmethane and oxalyl dichloride (Sarıpınar et al., 2000), with the semicarbazone (2) to obtain the 1,4,5trisubstituted 1 H -pyrimidine-2-one (3) (see scheme).

Received 4 January 2005
Accepted 7 February 2005
Online 12 February 2005

Fig. 1 shows the molecular structure and conformation of (3) with the atomic numbering scheme. Although close to being planar, the pyrimidine ring is slightly puckered. The angle between the planes formed by the ring atoms $\mathrm{N} 2-\mathrm{C} 3-$ C 4 and $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$ is 7.7 (4) ${ }^{\circ}$. The corresponding angle in $1-$ allyl-5-benzoyl-4-phenylpyrimidin-2-one (Öztürk et al., 1997) is $9.0(7)^{\circ}$. Selected bond lengths, angles and torsion angles are presented in Table 1. In the compound, the $A(\mathrm{C} 13-\mathrm{C} 18), B$ (C6-C11) and C (C21-C26) benzene rings form dihedral angles of $28.26(10), 55.53(9)$ and $55.96(10)^{\circ}$ with the pyrimidine ring, respectively. There are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2), but no $\pi-\pi$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Experimental

For the preparation of the title compound, 4-(4-methoxybenzoyl)-5-(4-methoxyphenyl)furan-2,3-dione, (1) ($0.32 \mathrm{~g}, 0.95 \mathrm{mmol}$), and p methoxybenzaldehyde semicarbazone, (2) ($0.18 \mathrm{~g}, 0.95 \mathrm{mmol}$), were
heated at 413 K for 1 h without any solvent. After cooling to room temperature, the residue was treated with dry diethyl ether and the crude product formed was crystallized from ethanol and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ (yield: $0.2 \mathrm{~g}, 45 \%$; m.p. 490 K). IR $\left(\mathrm{KBr}, v, \mathrm{~cm}^{-1}\right)$: $3450(\mathrm{C}=\mathrm{O}$, carbonyl overtone), 3050 (aromatic $\mathrm{C}-\mathrm{H}), 1665$ and $1650(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.68(s, 1 \mathrm{H},-\mathrm{N}=\mathrm{C}-\mathrm{H}), 8.30(s, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H})$, 6.87-6.74 ($m, 12 \mathrm{H}, \mathrm{ArH}$), 3.82, 3.76 and $3.68\left(q, 9 \mathrm{H},-\mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 192.44(t, \mathrm{ArCO}), 171.56(s, \mathrm{C}-4), 153.57(s, \mathrm{C}-2)$, 150.72 (s, C-6), 135.02 ($s, \mathrm{C}-8$), 134.45-115.78 (m, aromatic C), 118.68 ($s, \mathrm{C}-5$), $57.58,57.46$ and $57.40\left(q, 3 \mathrm{CH}_{3} \mathrm{O}\right)$. Analysis calculated for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$: C $69.06, \mathrm{H} 4.94, \mathrm{~N} 8.95 \%$; found: C 69.20, H $5.19, \mathrm{~N}$ 8.88\%.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$
$M_{r}=469.48$
Triclinic, $P \overline{1}$
$a=8.1127$ (7) A
$b=10.9405$ (9) \AA
$c=13.9263$ (11) \AA
$\alpha=77.147(7)^{\circ}$
$\beta=83.542(7)^{\circ}$
$\gamma=76.749(7)^{\circ}$
$V=1170.54(17) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.332 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 15633 reflections
$\theta=2.0-28.8^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, colorless
$0.46 \times 0.27 \times 0.07 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.965, T_{\text {max }}=0.994$
12784 measured reflections

Refinement

Refinement on F^{2}
4119 independent reflections
2655 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-16 \rightarrow 16$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.143$
$S=1.01$
4119 reflections
316 parameters

Figure 1

An ORTEP-3 (Farrugia, 1997) drawing of the structure of (3), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction.

H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\left(1.5 U_{\text {eq }}\right.$ for methyl).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

This study was supported financially by the Research Fund of Ondokuz Mayıs University (project No. F-366).

References

Cheng, C. C. (1969). Prog. Med. Chem. pp. 67-134.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kollenz, G. (1972). Liebigs Ann. Chem. 762, 13-22.
Kozlov, A. P., Sychev, V. I. \& Andreichikov, Y. S. (1986). Zh. Org. Khim. 22, 1756-1762.
Kruglenko, V. P., Gnidets, V. P., Klynev, N. A. \& Povstyano, M. V. (1987). Khim. Geterosikl. Soedin. 4, 533-535.
McNair-Scott, D. B., Ulbricht, T. L. V., Rogers, M. L., Chu, E. \& Rose, C. (1959). Cancer Res. pp. 15-19.

Maslivets, A. N., Smirnova, L. I. \& Andreichikov, Y. S. (1988). Zh. Org. Khim. 24, 1565-1566.
Öztürk, S., Akkurt, M., Hökelek, T. \& Yıldırım, İ. (1997). Cryst. Res. Technol. 32, 585-589.
Sankyo Co. Ltd/Ube Industries Ltd (1984). Jpn Patent No. 5936667 [8 436 667]; Chem. Abstr. 101, 1109392.
Sarıpınar, E., Yıldırım, İ., Güzel, Y. \& Akçamur, Y. (1996). Monatsh. Chem. 127, 505-512.
Sarıpınar, E., Güzel, Y., Önal, Z., İlhan, İ. Ö. \& Akçamur, Y. (2000). J. Chem. Soc. Pak. 22, 308-317.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Yıldırım, İ., Sarıp.inar, E., Güzel, Y., Patat, Ş. \& Akçamur, Y. (1995). J. Mol. Struct. (Theochem), 334, 165-171.
Yıldırım, İ., Tezcan, M., Güzel, Y., Sarıp.inar, E. \& Akçamur, Y. (1996). Turk. J. Chem. 20, 27-32.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

